
Preliminary communication

Formation of cyclo-oligosaccharides by polycondensation of the 3- and 6-O-tritylated derivatives of 1,2-O-(1-cyanoethylidene)- α -D-galactofuranose

LEON V. BACKINOWSKY, SERGEI A. NEPOGOD'EV, AND NIKOLAY K. KOCHETKOV N. D. Zelinsky Institute of Organic Chemistry, Academy of Sciences of the U.S.S.R., Moscow (U.S.S.R.) (Received May 25th, 1988; accepted for publication, October 1st, 1988)

Polycondensation of tritylated 1,2-O-(1-cyanoethylidene) derivatives of mono- and oligo-saccharides is a general method for the synthesis of regular homo- and hetero-polysaccharides¹. It is the fraction of highest molecular weight that is usually subjected to analysis, whereas low-molecular-weight products are not investigated. The d.p. of the polymeric products is determined as a rule from the ratio of terminal, non-reducing glycosyl units to the inner units, or by means of gel-permeation chromatography.

In continuing our studies of the synthesis of regular glycofuranans^{2,3}, we have carried out the polycondensation of tritylated 1,2-O-(1-cyanoethylidene) derivatives⁴ 1 and 2 of D-galactofuranose. In each reaction, regular linear polysaccharides were formed⁴ together with products which differed sharply from the polysaccharides in chromatographic mobility. Evidence for the cyclic structure of the latter products is now presented.

Products of polycondensation of the monomer 1 [high-vacuum technique, CH_2Cl_2 as a solvent, silver trifluoromethanesulfonate (0.1 equiv.) as the initiator, room temperature, 19 h, quenching with aqueous pyridine] were subjected to column chromatography on Silica Gel L (Chemapol, Czechoslovakia, 40/100 μ m, chloroform \rightarrow chloroform-acetone, 9:1) and a fraction containing several compo-

nents with similar $R_{\rm F}$ values was obtained in 36% yield. Compounds 3 and 4 were isolated by h.p.l.c. on Ultrasphere C-8 [methanol-water (3:1) \rightarrow methanol]: 3, $R_{\rm F}$ 0.45 [hereinafter Kieselgel 60 (Merck), heptane-ethyl acetate (3:2)], $[\alpha]_{\rm D}^{25}$ -62° (c 1.5, chloroform); 4, $R_{\rm F}$ 0.39, $[\alpha]_{\rm D}^{25}$ -65.5° (c 1.4); the polysaccharide had $R_{\rm F}$ 0.

Likewise, polycondensation of the monomer **2** (42 h) and subsequent column chromatography [benzene \rightarrow benzene—ethyl acetate (4:1)] afforded **5** {6%, $R_{\rm F}$ 0.71, $[\alpha]_{\rm D}^{28}$ -129° (c 1.2)}, **6** {5%, $R_{\rm F}$ 0.59, $[\alpha]_{\rm D}^{27}$ -79.5° (c 2)}, and **7** {10%, $R_{\rm F}$ 0.53, $[\alpha]_{\rm D}^{27}$ -41° (c 2.7)}; the corresponding polysaccharide had $R_{\rm F}$ 0-0.2.

The 13 C-n.m.r. spectra (Table I) of 3–7 each contained six signals for a repeating galactofuranose residue but none for terminal sugar moieties, indicating these oligosaccharides to be cyclic. The chemical shifts of the 13 C signals in 3 and 4 differed from each other (and from those in the spectrum of the polysaccharide, e.g., $\delta_{\text{C-1}}$ 104.90) due to the different sizes of the macrocycles. The same situation holds for the spectra of 5–7.

TABLE I ¹³C-n.m.r. Chemical Shifts^a (δ , p.p.m.) of **3-7** (Bruker am-300, CDCl₃, Internal Me₄Si)

Compound	C-1	C-2	C-3	C-4	C-5	C-6
3	107.61	83.42*	81.66*	85.30*	70.54	64.26
4	106.52	81.36*	80.99*	83.64*	70.22	64.13
5	104.95	75.61*	76.09*	82.37	67.75	63.89
6	106.51	80.92*	77.10	81.53*	71.64	66.75
7	106.47	80.92*	77.39	81.60*	70.76	66.42

^aAssignments marked * may be interchanged. Other signals: δ 20.2–20.8 (CH₃CO), 169.3–169.6 (CH₃CO), 165.4–166.2 (PhCO), 127.8–133.8 (Ph).

The structure of repeating units in 3–7 follows from their ¹H-n.m.r. spectra (Table II). The signals (s or bs) for H-1 indicate the 1,2-trans configuration. The high-field position of the signal for H-3 in the spectra of 3 and 4 (and for H-6 in the spectra of 5–7) points to $(1\rightarrow 3)$ and $(1\rightarrow 6)$ linkages.

Deacylation of a mixture of 3+4 (0.1M MeONa in chloroform-methanol, then aqueous NaOH) gave the unsubstituted oligosaccharides which were eluted from a column of Fractogel TSK HW-40 in the volumes typical for di- to hexasaccharides. Methylation analysis of these oligosaccharides gave only 1,3,4-tri-O-acetyl-2,5,6-tri-O-methylgalactitol, identified by its mass spectrum, and in accord with $(1\rightarrow 3)$ -linked galactofuranose residues and a cyclic structure.

The size of the macrocycles in 3–7 was deduced from their f.a.b.-mass spectra: 3, m/z 1650 [M + 2]+; 4, m/z 2063 [M + 3]+; 5, m/z 824 [M]+; 6, m/z 1238 [M + 2]+; 7, m/z 1649 [M + 1]+.

The formation of 3-7 from 1 and 2 is the first example of cyclisation in the polycondensation of tritylated 1,2-O-(1-cyanoethylidene) derivatives of sugars. Linear and cyclic oligosaccharides have been isolated after polycondensation of

TABLE II

1H-N.M.R. DATA^a FOR 3-7 (BRUKER WM-250, CDCl₃, INTERNAL Me₄Si)

Compound	Chemical shifts (δ) (Coupling constant, Hz)								
	H-1 (J _{1,2})	H-2 (J _{2,3})	H-3 (J _{3,4})	H-4 (J _{4,5})	H-5 (J _{5,6a})	H-6a (J _{6a,6b})	H-6b (J _{5,6b})		
3	5.12s* (0)	5.27s* (0)	4.17d (3.0)	4.61t (3.0)	5.98m	4.66m	4.90m		
4	5.20s*	5.30s*	4.16dd	4.59dd	5.94m	4.73d	4.73d		
	(0)	(0)	(1.7)	(3.0)	(6.0)	(0)	(6.0)		
5	5.15bs	5.47dd	5.43dd	4.71dd	5.48m	4.15dd	4.06dd		
	(1.3)	(4.5)	(8.8)	(1.7)	(5.5)	(8.8)	(11.0)		
6	5.26bs	5.31dd	5.35dd	4.83dd	5.66ddd	4.25dd	3.99dd		
	(1.2)	(2.4)	(5.7)	(2.8)	(7.2)	(10.0)	(4.5)		
7	5.22bs	5.14dd	5.27dd	4.62dd	5.83m	4.12dd	3.94dd		
	(0.9)	(2.0)	(5.2)	(1.5)	(6.0)	(9.0)	(1.0)		

^aAssignments marked * may be interchanged. Acetyl signals are at 1.67, 1.72, 2.10, 1.90, and 1.90 p.p.m. for compounds 3–7, respectively.

hydroxyl-containing acylglycosyl halides under Helferich conditions^{5,6}. Cyclisation reactions during polycondensations will lower the yield of the target high-molecular-weight polysaccharides.

REFERENCES

- 1 N. K. KOCHETKOV, Tetrahedron, 43 (1987) 2389-2436.
- 2 S. A. NEPOGOD'EV, L. V. BACKINOWSKY, AND N. K. KOCHETKOV, Bioorg. Khim., 12 (1986) 803-811.
- 3 S. A. NEPOGOD'EV, L. V. BACKINOWSKY, AND N. K. KOCHETKOV, Bioorg. Khim., 12 (1986) 940-946.
- 4 L. V. Backinowsky, S. A. Nepogod'ev, and N. K. Kochetkov, *Bioorg. Khim.*, 14 (1988) 1234-1241
- 5 D. GAGNAIRE AND M. R. VIGNON, Carbohydr. Res., 51 (1976) 140-144.
- 6 G. EXCOFFIER, M. PAILLET, AND M. VIGNON, Carbohydr. Res., 135 (1985) c10-c11.